
Command and Authorization Services for Multiple
Agents Acting on an Advanced Life Support System

Cheryl Martin, Debra Schreckenghost, and Pete Bonasso

NASA Johnson Space Center
TRACLabs

1012 Hercules, Houston, TX, 77058, USA
cmartin@traclabs.com, ghost@ieee.org,

r.p.bonasso@jsc.nasa.gov

Abstract. This paper describes current work developing command and authori-
zation services to support the coordination of multiple humans and an autono-
mous control agent working on the same underlying advanced life support sys-
tem. The primary goal of these services is to prevent unknowing or accidental
conflicts from arising as a result of issuing commands or taking action on the
system. Avoiding such conflicts minimizes the risk of interfering with the
work of another agent or putting the system into an unsafe operating state. This
paper provides an overview of the advanced life support system at NASA to
which this work has been applied and then discusses details for authorization,
overrides, and system reconfiguration for commanding.

1 Introduction

NASA is currently investigating advanced life support systems for extended opera-
tion in future space habitats such as the space station or possible planetary sites.
Since 1995, our group has been working at NASA’s Johnson Space Center to provide
intelligent control for advanced life support systems [3, 5]. These intelligent control
systems have been realized by software agents using an architecture known as 3T [2]
and were designed to run autonomously for months at a time. 3T is a layered control
architecture whose top tier is a hierarchical task net (HTN) planner, the plans of
which are executed through a reactive middle tier that in turn manages the sensors
and actuators of the hardware via a low-level control tier. One such life support sys-
tem is the advanced Water Recovery System (WRS). The WRS removes the organic
and inorganic materials from waste water (hand wash, shower, urine and respiration
condensate) to produce potable water.

In a previous paper, [1], we have explored safety-related issues for the design of
the autonomous control software for the WRS system. These design issues include
using adjustable autonomy to allow humans to interact with the agent safely, counter-
acting the slow degradation of hardware over time, being able to “safe” subsystems
(put them into a shutdown or standby mode) in the event of power or communication
failures, using checkpoints to quickly restore the WRS to nominal operations, and

developing tools to help the human understand problem situations in order to recover
from the anomaly.

In this paper, we focus on achieving the safe operation of the WRS by supporting
the coordination of multiple humans and the control system, who may each take ac-
tions on the same underlying WRS system. Although the 3T-based automated control
system operates the WRS hardware unattended most of the time, there are several
cases in which humans must also take actions on the life support system. Actions that
humans take can be either manual or mediated. Manual actions are those that the
human carries out directly on the life support system hardware, for example, physi-
cally turning a valve. A human conducts mediated actions by giving instructions to
the automation software, which carries out the actions. In contrast, automated actions
are those taken by the control software during its normal operation without any re-
quests from an external source. Manual and mediated actions are needed for two
possible reasons (1) the action must be manual because the automation has no appro-
priate actuator or (2) the action could be carried out either by a human or via the
software but is motivated by circumstances outside the scope of normal operation for
the automation.

Challenges arise in coordinating humans and the control agent in their actions on
the system because simultaneous or interleaved actions may be required or desired.
The motivation for different agents to take different actions may arise from independ-
ent triggers or goals, and these actions may conflict with or impede each other. Fur-
ther, it is difficult for humans to determine what actions other humans may be taking
on the system because users may be located remotely from the WRS when taking
mediated actions. It is also difficult for the autonomous control agent to determine
what human agents are doing, both due to limited instrumentation of manual control
inputs and due to the lack of models for manual actions. Such models might allow
the control agent to map observed human actions to known WRS procedures for the
purpose of predicting the human’s next steps and maintaining safe operation of the
WRS throughout the procedure.

In this paper, we present command and authorization services as implemented in a
user support system for interacting with automated control agents called the Distrib-
uted Collaboration and Interaction (DCI) Environment. The goals of these services in
DCI are (1) to decrease the risk of conflicting commands to the underlying physical
system (2) to decrease the risk of interfering with the work of another agent (human
or the control agent) pertaining to the underlying physical system, and (3) to decrease
the risk of the system being put into a bad state by the action of any agent (for exam-
ple, a state where pumps may be damaged by attempting to pull water from a blocked
source). In order to achieve these goals, we offer software that assists a human user
in performing mediated commands and in reconfiguring the system so that it is safe to
perform commands (mediated or manual). This reconfiguration support includes
adjusting the autonomy of the autonomous control system when necessary. The DCI
environment also provides command lock-outs for possibly conflicting commands
from different human users by selectively granting authorization to act on the system.

The following two sections provide an overview of the WRS system and the com-
mands on this system currently supported by the DCI prototype. The paper then
discusses how DCI supports command and authorization capabilities including de-

tailed discussions of the authorization model, the need for authorization overrides,
and support for reconfiguring the WRS and its control agent to accommodate human
activities.

2 Water Recovery System (WRS) Overview

The WRS is composed of four subsystems shown in Fig. 1. These subsystems are
loosely coupled, and their primary interdependencies are related to input and output
of the water to be processed.
(1) The biological water processor (BWP) removes organic compounds and am-
monia by circulating the water through a two-stage bioreactor. The first stage uses
microbes to consume the organic material using oxygen from nitrate molecules. The
second stage uses microbes to convert the ammonium to nitrate.
(2) The reverse-osmosis (RO) subsystem removes inorganic compounds from the
output of the BWP, by forcing the water to flow at high pressure through a molecular
sieve. The sieve rejects the inorganic compounds, concentrating them into brine. At
the output of the RO, 85% of the water is ready for post-processing, and 15% of the
water is brine.
(3) The air evaporation system (AES) removes the concentrated salts from the
brine by depositing it on a wick, blowing heated air through the wick, and then cool-
ing the air. The inorganic wastes are left on the wick and the condensate water is
ready for post processing.
(4) The post-processing system (PPS) makes the water potable by removing the
trace inorganic wastes and ammonium using a series of ion exchange beds and by
removing the trace organic carbons using a series of ultra-violet lamps.

In total, the automated control system for the WRS manages more than 200 sen-
sors (measuring pressure, temperature, air and water flow rates, pH, humidity, dis-
solved oxygen, and conductivity) and actuators (including pumps, valves, ultra-violet
lamps, and heaters).

Biological Water
Processor (BWP)

Reverse
Osmosis

(RO)

Post
Processing

System
(PPS)

Air Evaporation
System (AES)

85%

15%

15%

100%

100%

100%

100%

Water Recovery System (WRS)

Fig. 1. Schematic diagram of WRS system and subsystems

3 WRS Activities Supported

Our current work concerning command and authorization addresses the coordination
of multiple humans with each other and with the automation before, during, and after
the execution of human-initiated actions on the WRS hardware. We currently sup-
port these four human-initiated activities:

• BWP nitrifier slough – The biofilm that grows on the insides of the tubes in the
nitrifying portion of the BWP will thicken over time, slowly constricting the passage
of water and air. To minimize clogs, the control system periodically sloughs the
biofilm by sharply increasing the airflow. This automatic slough is only partially
effective, and eventually a human is required to manually slough the nitrifier using
high pressure water flow. The configuration for this activity requires ensuring that
water is flowing in the BWP as well as suspending the automatic shutdowns (ASDs)
that the control automation will normally enact if tube pressure readings go outside
the nominal range. The manual slough takes from twenty minutes to an hour to com-
plete. The BWP nitrifier slough is a manual activity.
• RO slough – Inorganic deposits may accumulate inside the RO’s tubular mem-
branes. If the water flow is reversed, a small ball in each tube will slide along the
tube length, sloughing this buildup away. The automated control system carries out
this RO slough at a predetermined frequency. If the RO output quality degrades, a
human may manually command the control system to slough the membranes again.
Reconfiguration for this activity requires the RO to be shutdown. The RO slough
takes four minutes to complete followed by a thirty minute purge of the RO subsys-
tem. The RO slough is a mediated activity. This is the only mediated action the
command and authorization service currently supports.
• RO membrane change out – Eventually the RO membranes lose their efficiency and
must be physically replaced. The RO is shutdown, and the upstream and downstream
subsystems are placed in standby mode. The change out takes approximately twelve
hours to complete. The RO membrane change out is a manual activity.
• BWP pressure calibration – Pressure sensors are the primary input used to control
the BWP. These sensors require calibration about every three months. In order to
conduct the calibration, the BWP must be disconnected from the downstream subsys-
tems and placed in a standby mode. The calibration procedure usually takes from
four to six hours to complete. The BWP pressure calibration is a manual activity.

4 Commanding the WRS

When a human wishes to perform actions on the WRS using the command and au-
thorization capability in the DCI environment, he or she requests the appropriate
commanding permission for a particular activity. Throughout the paper, the term
authorization implies a license to take action on the WRS. We use the term com-
manding to convey this authorization plus the concept of whether the system is ready
for the execution of a particular activity associated with a pre-defined procedure. To
grant commanding for a given activity, DCI must first, if possible, grant authorization

for the set of manual or mediated actions (including reconfiguration actions) required
by the activity, and then reconfigure the WRS hardware and control automation to the
proper state required for the activity.

In the DCI environment, each user is represented by an Ariel agent [4], which acts
as a liaison between the user and the rest of the software environment. An Ariel
agent provides a human-centric interface into the software environment and provides
a number of services including notification, task tracking, and location tracking. In
particular, the Ariel agent provides a Command and Authorization Service, which
assists its user with command and authorization requests. Fig. 2 shows two Ariel
agents, the WRS system, and components discussed in the upcoming subsections: the
Command and Authorization Manager (CAM) and the Augmentation for Command-
ing (AFC).

4.1 Command and Authorization Manager (CAM)

The CAM accepts requests for commanding from users through their Ariel agents.
Each request is associated with an activity that the user wishes to perform. The CAM
first queries the AFC (see next subsection) for information about the effects of the
requested activity as well as any configuration conflicts between the current system
configuration and the configuration required for the activity. Section 5, below, de-
scribes how the CAM uses the results of this query to grant or deny authorization. If
authorization is denied, this result is returned to the user along with a description of
the configuration conflicts. If authorization is granted, and the user wishes to con-
tinue, the CAM asks the AFC to carry out any required reconfiguration on the WRS
including orchestrating required manual actions. Once the reconfiguration, if any, is
complete, the CAM informs the user through his or her Ariel that the WRS is ready to
command. The user can then proceed with the actions required by the procedure for
the requested activity. When the user has completed the activity, he or she requests
the CAM to release commanding for the activity. The CAM informs the AFC that the

Augmentation for
Commanding

(AFC)

WRS
Automated

Control Agent

WRS Life
Support

Hardware
WRS

Command and
Authorization

Manager (CAM)

Command/
Authorize

(CAS)

Interrupt
Handle
(IHS)

Task
Status
(TSS)

Interactive
Procedure

(IPS)

Interactive
Event
(IES)

Notification
(NS)

Location
(LS)

User
Interface

(UIS)

State
Management

(SMS)

ARIEL

User Interface

Ariel 1

Person 1

User Interface

Ariel 2

Command/
Authorize

(CAS)

Interrupt
Handle
(IHS)

Task
Status
(TSS)

Interactive
Procedure

(IPS)

Interactive
Event
(IES)

Notification
(NS)

Location
(LS)

User
Interface

(UIS)

State
Management

(SMS)

ARIEL

Person 2

commanding requests,
returns authorization and

reconfiguration results

queries for effects
of activities

reconfig requests

query current
system config

reconfig
commands

manual
actions

Fig. 2. Implementation of Command and Authorization service in the DCI environment

activity's configuration is no longer required (which may result in additional recon-
figuration of the WRS by the AFC to “un-configure” for the activity) and then re-
leases the authorization.

4.2 Augmentation for Commanding (AFC)

The AFC is a piece of augmenting software in the DCI environment (shown by the
dotted lines indicating coupling to the WRS). Augmenting software is tightly coupled
to the automation through shared models or data but has its own processing resources.
In this case, the AFC shares static models of both the physical WRS system and the
procedures that can be performed on the system (including reconfiguration proce-
dures). Using these models, the AFC can predict how various activities will affect
the WRS. The AFC can also query the WRS control agent dynamically to get the
current system configuration.

When the CAM queries the AFC about the effects of an activity, the AFC provides
two results. First, the AFC decomposes the associated reconfiguration procedure (as
well as the activity’s procedure model, if available) to determine and return all com-
ponents of the WRS that may be affected by the activity. In the current implementa-
tion, this result is highly abstracted and consists of an indicator for the highest-level
system or subsystem that is affected. This system/subsystem approach is made exten-
sible by also returning the specific decomposition of subsystems that are affected by
the reconfiguration (in the future, subcomponents of the subsystems may also be used
here). Second, the AFC queries the WRS automated control agent for the current
system configuration (i.e., the current state of the eight valves and ten pumps in the
WRS) and returns a list of conflicts between the current state and the state that would
result from reconfiguration. The CAM uses the first result to determine whether to
grant authorization for the activity, and passes the second set of results back to the
user.

If the CAM asks the AFC to reconfigure the WRS for a requested activity, the
AFC triggers the WRS control agent to perform the reconfiguration, if any. During
the course of the reconfiguration, some manual actions may also be required. When
it is time for a manual reconfiguration action, the WRS control agent, through the
AFC, CAM, and the Ariel agent’s user interface, requests the user to perform the
action and waits for a return indication from the user that it is accomplished. This
feedback from the user is needed because manually operated physical devices are not
normally instrumented for computers, so manual actions are not easily observable by
the software for tracking a user’s progress in the reconfiguration. Once all reconfigu-
ration actions have been completed, the CAM informs the user that the WRS is ready
for commanding.

5 Managing Authorizations and Overrides

Authorization to act on the WRS is managed by the CAM. The CAM is centralized
to provide synchronized access from multiple entities (various Ariel agents and, in the

future, the automated control system itself) to a single model describing which enti-
ties hold which authorizations. In general, granting authorization to one entity for a
given scope of action blocks other entities from receiving authorization overlapping
that scope until the first authorization is released. This blocking authorization para-
digm is a well-known technique and is applied here to prevent multiple entities from
acting on the WRS simultaneously for activities within the same scope, which may
therefore interfere with one another.

When possible, the CAM should authorize concurrent activities that can be
achieved safely together. In our life support domain, crew time is a very valuable
resource, and crew health is a top priority. Therefore we want to minimize the cir-
cumstances under which our system might unnecessarily block a crew member from
performing an activity on the life support system or unnecessarily slow down that
crew member. Further, our design philosophy must account for the nature and culture
of space exploration in which crew safety is considered to be the top mission priority,
above vehicle health and mission success. Since life support systems are required for
crew safety, inadvertently taking actions that impede or interfere with crew life sup-
port can have a negative effect on crew safety. Absolutely preventing a crew member
from performing any activity on a life support system could potentially be fatal, given
an unforeseen circumstance or an emergency situation.

Therefore, our authorization design goal is to enhance safe operation of the life
support system by helping to coordinate humans and the control agent to prevent
unknowing or accidental conflicts. However, we are fully cognizant that a well
trained and fully informed crew member should be allowed to override any blocking
authorization that may exist, and take action, risking a conflict in order to achieve a
possibly higher purpose. Consequently, our design has two components (1) deter-
mine which activities can be safely authorized for concurrent execution and allow the
maximum concurrency possible, and (2) if an activity cannot be authorized because it
cannot be guaranteed for safe execution in conjunction with other currently author-
ized activities, provide as much information as possible about potential conflicts to
the user and allow the user to override the authorization. The following subsections
discuss each of these design components in turn.

5.1 Authorizations

We believe that the maximum concurrency without risking conflicts can be
achieved by authorizing activities Act1 and Act2 concurrently as long as (1) their
configurations do not conflict (states of the hardware and software) and (2) no action
taken for Act1 (during reconfiguration or the procedure itself) affects the same com-
ponent or state value (i.e., valve position) as any action taken for Act2, and vice
versa. For our initial approach, we used models already within the WRS control
agent to support command and authorization and limited our development of new
models. Unfortunately, (1) the existing models for the required configurations are not
detailed enough to guarantee no conflicts (e.g., they have not been extended to in-
clude required operating characteristics of the automation) and (2) we do not have
models of the procedures for activities that require only manual action.

Until we extend the activity models and reconfiguration models to overcome these
limitations, we have initially adopted a conservative approach to authorization that
works well with the existing models but does not allow the maximum possible au-
thorization concurrency. The approach is conservative in that it locks authorization
for an entire subsystem (e.g. the RO) if any component of that subsystem is affected
by an activity (by the reconfiguration, or the activity itself if a model exists), and it
locks authorization for the entire WRS if multiple subsystems or the dependencies
between subsystems (e.g. water flow) are affected. For the small set of actions and
scenarios we have considered thus far, the conservative nature of this approach has
not been a disadvantage.

When a user requests commanding permission for a given activity from the CAM,
the CAM obtains information from the AFC about the highest-level system or subsys-
tem affected by the activity. The CAM translates the system/subsystem decomposi-
tion into a model of scopes for granted authorization. Let Φ be the set of all system
components such that authorization can be assigned for the scope of that component.
For the current implementation Φ = {WRS, BWP, RO, AES, PPS}. For the variables
x and y, let x, y ∈Φ. Let Sub(x, y) define a predicate that indicates whether compo-
nent x is a subsystem or subcomponent of component y in a hierarchical decomposi-
tion of the system. For the current implementation, the following hold: Sub(BWP,
WRS), Sub(RO, WRS), Sub(AES, WRS), Sub(PPS, WRS).

Let α be the set of all agents (including humans and the automated control agent)
that can act on the system. For the variables a and b, let a, b ∈ α. Let Auth(a, x)
define a predicate indicating that agent a has authorization to act over the scope of
system component x.

The CAM uses the following rule to assign authorizations: When b requests
Auth(b, x), then grant Auth(b, x) if and only if no other agent holds the authorization
for x, for any of x’s subsystems, or for any component that has x as a subsystem. In
other words, when request(Auth(b, x)),

if ∀a, ¬Auth(a, x)
∧ ∀ a, y, Sub(x, y) ⇒ ¬Auth(a, y)
∧ ∀ a, y, Sub(y, x) ⇒ ¬Auth(a, y)

then Auth(b, x).

5.2 Overrides

If the CAM denies a user authorization to act on the system, the user should (by
policy) wait until the authorization can be granted before taking any action. How-
ever, enforcing such a lockout could prevent a user from taking needed action in an
emergency, which is a particularly troubling prospect with respect to a critical life
support system. The development and use of more sophisticated models for the ef-
fects of activities on the system will allow us to avoid being overly conservative,
maximizing the number of activities we can authorize concurrently. However, these
advances will not address situations in which a low-priority ongoing activity may
block authorization for an emergent higher-priority activity. We are currently work-
ing on building a user override capability for denied authorizations. The override

capability should allow the user to obtain the authorization and perform the activity
with no less protection from conflicts with newly arising tasks than the protection
provided to a user granted a normal authorization. However, granting an override
authorization is more complex than simply granting a new authorization that conflicts
with existing authorizations. In particular, the specific areas of conflict must be iden-
tified and the appropriate users who currently hold authorizations must be notified
about any potential problems that might arise in the context of the new override au-
thorization. Determining the correct reconfiguration actions to take for an override
situation also raises new questions. If configurations required for two simultaneously
authorized activities conflict (i.e., require different state values or software modes),
how should priority for setting these states be determined? We are currently working
on a design to address these override issues. Explicit override capabilities are not
currently supported in the prototype implementation.

The current implementation does allow overrides to occur, however, because the
current WRS implementation offers limited options for enforcement of either denied
authorizations or denied system access in general. There is some password protection
for mediated actions, but anyone could theoretically walk up to the system at any time
and, for example, power down a pump. We hope to improve enforcement as the
override software support is developed. Suri et al describes relevant previous work
on policy enforcement [7]. In the interim, when an authorization is denied, the CAM
reports back to the requesting user the set of pre-existing authorizations that conflict
with the request as well as the list of conflicts between the current system configura-
tion and the requested activity’s configuration. The highly trained user can consider
this information to determine how to proceed. He or she may ask other users holding
a conflicting authorization to release it, or he or she may proceed manually with the
desired reconfiguration and activity with foreknowledge of possible conflicts that
may arise. Although much work remains, making users aware of possible conflicts
arising from ongoing activities by other users on the WRS is an important first step
toward supporting the coordination of multiple humans and an automated control
agent working on the same underlying physical system.

5.3 A Note on Security

The current CAM implementation assumes that every entity requesting authorizations
possesses the necessary credentials (authentication, skills, and/or certificates) for the
authorization to be granted. We would like to add credential checking in the future.
However, it is not currently critical in our application because (1) we assume all pos-
sible users (NASA crew) are highly trained and (2) our authorization process is used
primarily for coordination rather than access control enforcement. Although users
must log in to use the DCI environment (authentication), they can currently act on the
WRS by circumventing DCI completely. Users are motivated to request commanding
permission through DCI primarily to minimize the risk of conflicts for themselves
and the control agent and to obtain assistance from the AFC in reconfiguring the
WRS hardware and the control agent for the desired activity. However, the users
currently do not need the system’s permission to take action.

6 Reconfiguration for Commanding

Reconfiguration for commanding is managed by the AFC. The AFC is coupled to the
WRS automated control agent and shares its static models of both the physical WRS
system and the procedures that can be performed on the system (including reconfigu-
ration procedures). Using these models, the AFC can predict how various activities
will affect the WRS. The AFC can also query the WRS control agent dynamically to
get the current system configuration and it can trigger the WRS control agent to take
actions to carry out any reconfiguration necessary to prepare for an activity. In gen-
eral, the reconfiguration process may include setting the states of particular hardware
such as valves open/closed or pumps on/off, adjusting the autonomy of the automa-
tion to allow for manual actions [6], bringing the state of the system to a particular
point such as getting tube pressures or heater temperatures within a specified range,
or commanding a subsystem to a particular processing mode. The current implemen-
tation handles a subset of these types of reconfiguration actions and affects both
hardware (the states of eight valves and ten pumps) and software (the operating char-
acteristics of the automated control system). Actions required to achieve the recon-
figuration necessary for each of these activities may be either manual or mediated.
Note that mediated actions are performed by the control agent, but triggered exter-
nally, and they can be initiated by a human or by external software. Actions taken by
the WRS control agent in the course of reconfiguration are examples of mediated
actions that are initiated by external software (the AFC).

We found that models of reconfiguration procedures could be used to (1) deter-
mine what parts of the WRS would be affected by (reconfiguring for) an activity and
(2) allow the AFC to trigger the WRS control agent to perform the reconfiguration
necessary. Except for mediated activities, such as the RO slough, in which the con-
trol agent performs the actions in the body of the activity itself, models of reconfigu-
ration procedures were not originally developed for the WRS control agent because
they were not necessary for autonomous operation. In support of the DCI command-
ing capability, we added models of the reconfiguration procedures for the other three
activities described above in Section 3.

The AFC ensures that the WRS maintains the configuration, as a whole, required
to support all of the currently authorized activities. If authorization were allowed for
only one activity any given time, the AFC could support reconfiguration for this ac-
tivity by first triggering the WRS to execute the reconfiguration procedure for that
activity after authorization is granted and then triggering the WRS to execute the
reconfiguration procedure to return to nominal operation before authorization is re-
leased. However, since multiple authorizations should be supported, the AFC must
unify the configuration state required for all concurrent authorizations. The following
paragraphs describe how the AFC and WRS control agent together achieve the de-
sired unified configuration for all currently authorized activities.

Let C be the set of all components in the WRS system. In general, this set may in-
clude hardware (values and pumps), software modules, measurable operating
characteristics (such as tube pressure), or abstractions of groups of system pieces such
as subsystems. To apply the reasoning presented here, the members of C must be
independent and separable. This means, for example, that no pump listed as a
member of C can be a part of the BWP subsystem if the BWP subsystem is also a

C can be a part of the BWP subsystem if the BWP subsystem is also a member of C.
For the variable c, let c ∈C.

Let S be the set of all states that components in the WRS system can take. Exam-
ples of possible state values in S may include ON, OFF, OPEN, CLOSED, <180psi,
STANDBY, etc. For the variable s, let s ∈S.

Let the tuple (c, s) be a component-state pair1 in which component c takes on the
state value s. Let R be a set of n component-state pairs representing a configuration
state in the WRS. Components in C that are not included in any element of R have no
specific state requirement for that configuration (i.e., the states of these components
are don’t cares in the configuration).

() () (){ }nn scscscR ,,...,,, 2211= .

The desired configuration state for a given activity can be determined by examin-
ing the reconfiguration procedure for that activity. The AFC keeps a prioritized list
of the configurations required. The lowest priority configuration (priority 0) is the
normal operating configuration (nominal-ops) during which no activities are currently
authorized. When any activity is authorized, its configuration is added to the list and
given the next highest priority above nominal-ops (priority 1). Once support for
override authorizations is implemented, the configuration for activities requiring
overrides would be added to the list at even higher priority levels. Assigning these
priorities correctly for configurations related to overrides is an open research issue.
Given this prioritized list, the unified configuration is determined by stepping through
each configuration, starting with the lowest priority configuration (configurations
with the same priority may be processed in any order), and adding its component-
state pairs to the unified result. As each component-state pair is added, it will over-
write any pair containing the same component in the unified configuration. There-
fore, in the final unified configuration, only the highest priority state for each compo-
nent will be included. The AFC triggers the WRS control agent to apply this desired
unified configuration each time a change in authorizations occurs.

1 For brevity in this discussion, we will not explicitly disallow unrealistic component-state

pairs such as (TUBE1PRESSURE, ON) or (VALVE2, <180psi).

Consider the following example containing no overrides: Assume, that the nomi-
nal-ops configuration for normal operation during which no activities are authorized
is RN = {(PUMP1,ON),(PUMP2,ON),(VALVE3,OPEN)}. Activity A requires con-
figuration RA = {(PUMP1,OFF),(PUMP2,OFF)} and Activity B requires configura-
tion RB = {(VALVE3,CLOSED),(PUMP1,OFF)}. These configurations overlap
(contain the same component holding the same state value) as shown in Fig. 3, but do
not conflict (do not contain the same component with different state values).

Therefore, these activities A and B could be authorized concurrently2 with the
same configuration priority. Table 1 shows some example sequences of authoriza-
tions for these activities (assuming concurrent authorization is supported) and how
the configuration of the WRS would change to accommodate these authorizations.

2 However, for our currently implemented conservative authorization model in which users

block an entire subsystem if they affect a single component in that subsystem, these activi-
ties would not be authorized concurrently.

RA

RB

PUMP2,
OFF

PUMP1,
OFF VALVE3,

CLOSED

component-state space

Fig. 3. Venn diagram of required configurations, R, for Activity A and Activity B

Table 1. Possible authorization sequences with resulting configuration changes

Time Authorized
Activities

Prioritized
Configurations

Unified Desired
Configuration

Actions
Taken

t0 none (RN)
PUMP1, ON
PUMP2, ON

VALVE3, OPEN
none

t1 A (RN, RA)
PUMP1, OFF
PUMP2, OFF

VALVE3, OPEN

turn off PUMP1
turn off PUMP2

t2 none (RN)
PUMP1, ON
PUMP2, ON

VALVE3, OPEN

turn on PUMP1
turn on PUMP2

t3 B (RN, RB)
PUMP1, OFF
PUMP2, ON

VALVE3, CLOSED

turn off PUMP1
close VALVE3

t4 B, A (RN, RB, RA)
PUMP1, OFF
PUMP2, OFF

VALVE3, CLOSED
turn off PUMP2

t5 A (RN, RA)
PUMP1, OFF
PUMP2, OFF

VALVE3, OPEN
open VALVE3

7 Conclusions

The command and authorization services in the DCI environment are designed to
support the safe operation of advanced life support systems and their intelligent con-
trol agents by enhancing the coordination among multiple humans and these control
agents. This work is still preliminary, but supports future evaluation with respect to
safety metrics and guarantees. Our prototype system makes users aware of possible
conflicts arising from ongoing activities by other users on the WRS system. We have
developed and implemented a conservative policy for granting authorization to act on
the system, which ensures that no more than one user at a time has authorization at a
given scope. Further, as an integral part of processing a human’s request to perform
an activity on the physical system, we provide previously unavailable assistance in
reconfiguring the system for that activity. By suspending or modifying automatic
responses in the control system for the duration of human-initiated activities, we have
also enhanced coordination between humans and the automation.

We plan to enhance our conservative authorization policy in the future as we de-
velop improved models of the effects of human activity on the life support system and
therefore better understand possible sources of conflict. We would like to further
enhance our authorization capabilities by supporting credential checking as well as
authorization enforcement and override capabilities. Finally, we plan to extend this
work to better support coordination with the autonomous system. This additional
support would include (1) extending supported activities to those containing a mix-
ture of manual, mediated, and automated actions, (2) making more extensive use of
the adjustable autonomy and traded control capabilities of the automation, (3) grant-
ing explicit authorizations to the automation in addition to humans such that humans
are protected from unknowingly acting on the system when the automation is per-
forming a critical operation, and (4) integrating command and authorization with
control planning for the autonomous system and task planning for the human to avoid
redundant reconfiguration. Although much work remains to fully support safe human
commanding and authorization in coordination with autonomous systems, the pre-
liminary work presented in this paper provides both enhanced capabilities and en-
couragement that we have defined a reasonable path forward.

8 Acknowledgements

This work was performed under the project titled “Distributed Crew Interaction
with Advanced Life Support Control Systems” and supported by the Human-
Centered Computing area of NASA's Intelligent Systems Program, which is under the
direction of Dr Michael Shafto.

References

1. R. P. Bonasso, "Safe Agents for Life Support," in Proc. Workshop on Safe Agents at
AAMAS'03, Melbourne, Australia, 2003, pp.
2. R. P. Bonasso, J. R. Firby, E. Gat, D. Kortenkamp, D. P. Miller, and M. G. Slack,
"Experiences with an Architecture for Intelligent, Reactive Agents," Journal of Experimental
and Theoretical Artificial Intelligence, vol. 9, pp. 237-256, 1997.
3. R. P. Bonasso, D. Kortenkamp, and C. Thronesbery, "Intelligent Control of A Water
Recovery System: Three years in the Trenches," AI Magazine, vol. 24, 2002.
4. C. E. Martin, D. Schreckenghost, R. P. Bonasso, D. Kortenkamp, T. Milam, and C.
Thronesbery, "An Environment for Distributed Collaboration Among Humans and Software
Agents," in Proc. 2nd International Conference on Autonomous Agents and Multi-Agent Sys-
tems, Melbourne, Australia, 2003, pp. 1062-1063.
5. D. Schreckenghost, D. Ryan, C. Thronesbery, R. P. Bonasso, and D. Poirot, "Intelli-
gent Control of Life Support Systems for Space Habitats," in Proc. Tenth Conference on Inno-
vative Applications of Artificial Intelligence, Madison, WI, 1998, pp. 1140-1145.
6. D. Schreckenghost, C. Thronesbery, R. P. Bonasso, D. Kortenkamp, and C. E. Mar-
tin, "Intelligent Control of Life Support for Space Missions," IEEE Intelligent Systems, vol. 17,
pp. 24-31, 2002.
7. N. Suri, J. M. Bradshaw, M. Burstein, A. Uszok, B. Benyo, M. Breedy, M. Carvalho,
D. Diller, P. Groth, R. Jeffers, M. Johnson, S. Kulkarni, and J. Lott, "DAML-based Policy
Enforcement for Semantic Data Transformation and Filtering in Multi-agent Systems," in Proc.
Second International Joint Conference on Autonomous Agents and MultiAgent Systems, Mel-
bourne, Australia, 2003, pp. 1132-1133.

